LA-UR-05-5054

Approved for public release; distribution is unlimited.

Author(s):

Russell D. Mosteller

Submitted to:

2005 mini-CSEWG Meeting
July 13, 2005
Oak Ridge National Laboratory

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Concerns with ENDF/B-VII Data Identified during Data Testing with MCNP5 $^{\rm TM}$

Russell D. Mosteller

Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 USA

Oak Ridge National Laboratory To Be Presented at the 2005 mini-CSEWG Meeting

Pidoe National Laboratory

July 13, 2005

need to be addressed. This presentation identifies specific areas for concern, including the unresolved resonance region for ²³⁵U, fast and thermal cross sections for Th, fast cross sections overall agreement with integral benchmark results, it also has identified some problems that still distribution for ²H. for ²³⁷Np and Cu, thermal cross sections for ²³³U and ²³⁹Pu, and the angular scattering 2006. Although data testing for that anticipated release has shown substantial improvement in The initial release of nuclear data for ENDF/B-VII is expected to occur in late 2005 or early

Concerns with ENDF/B-VII Data Identified during Data Testing with MCNP5™

Russell D. Mosteller
Applied Physics Division
Los Alamos National Laboratory

Presented by Robert C. Little

Presented at the 2005 mini-CSEWG Meeting
Oak Ridge National Laboratory

July 13, 2005

MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory

IMPROVEMENTS PRODUCED BY INITIAL RELEASE OF ENDF/B-VII

Initial ENDF/B-VII produces substantially better agreement with benchmark results than ENDF/B-VI for

- Bare metal spheres (²³³U, HEU, Pu)
- BIG TEN (10 wt.% U reflected by normal U)
- Water-reflected metal spheres (HEU and Pu)
- Lattices of ²³³U and LEU fuel pins in water

In addition, the consistency between results for the bare metal spheres and the corresponding Flattop configurations has improved substantially (Flattop configurations consist of a metal sphere reflected by normal uranium)

AREAS OF CONCERN FOR ENDF/B-VII

Data testing with MCNP5 has identified several areas of concern:

Unresolved resonance region for ²³⁵U (Graphite-Moderated Zeus)

Fast and thermal cross sections for Th (THOR and SB HEU lattice)

Fast cross sections for ²³⁷Np (Np sphere reflected by HEU)

Fast cross sections for Cu (Unmoderated Zeus)

Thermal cross sections for ²³³U and ²³⁹Pu (48-inch spheres of solutions)

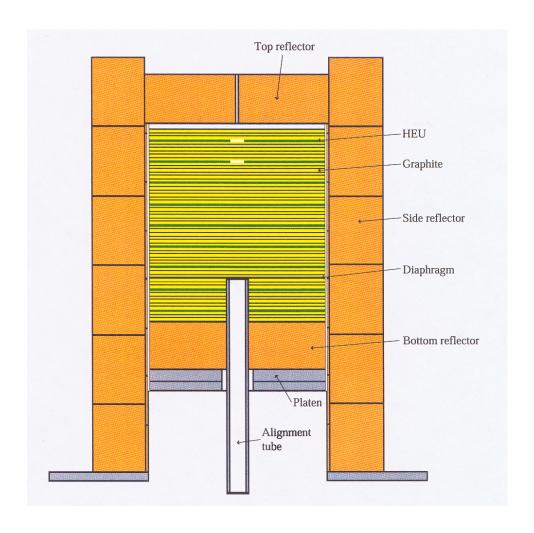
Angular scattering distribution for ²H (Heavy-water solutions with high leakage)

NUCLEAR DATA FOR MCNP5 CALCULATIONS

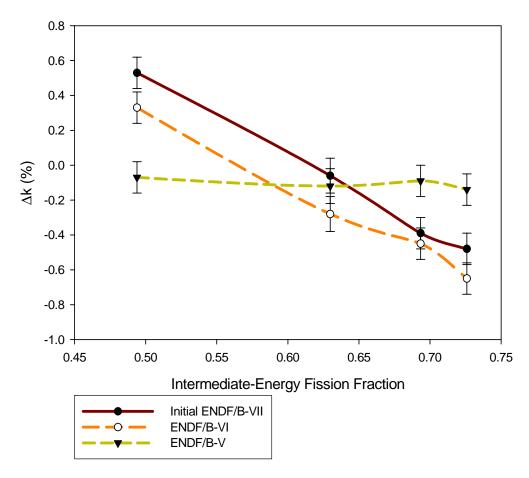
All calculations were performed with continuous-energy nuclear data libraries

ENDF/B-VI calculations employed the ACTI and ENDF66 nuclear data libraries and the SAB2002 library of thermal scattering laws

Initial ENDF/B-VII calculations employed nuclear data provided by LANL group T-16 for the initial release of ENDF/B-VII


Those ENDF/B-VII data include the uranium isotopes (with new resonance parameters for ²³³U, ²³⁵U, and ²³⁸U developed at ORNL), ²³⁹Pu, and ¹H

ENDF/B-VI nuclear data were retained for all other nuclides in the ENDF/B-VII calculations


ZEUS-2 CONFIGURATION (reasonably representative of others)

ZEUS HEU-GRAPHITE BENCHMARKS

⇒ Cross sections for ²³⁵U in the unresolved resonance region should be re-examined

FAST PU METAL BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	Initial ENDF/B-VII	ENDF/B-VI	
Jezebel	1.0000 ± 0.0020	0.9998 ± 0.0003	0.9971 ± 0.0003	
Jezebel-240	1.0000 ± 0.0020	1.0003 ± 0.0003	0.9980 ± 0.0003	
Pu Buttons	1.0000 ± 0.0030	0.9984 ± 0.0003	0.9962 ± 0.0003	
Flattop-Pu	1.0000 ± 0.0030	1.0004 ± 0.0003	1.0016 ± 0.0003	
THOR	1.0000 ± 0.0006	1.0079 ± 0.0003	1.0057 ± 0.0003	

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta \mathbf{k}| > 2\sigma$$

Initial ENDF/B-VII results are within 1 standard deviation for all cases except THOR

THOR consists of central sphere of Pu reflected by Th

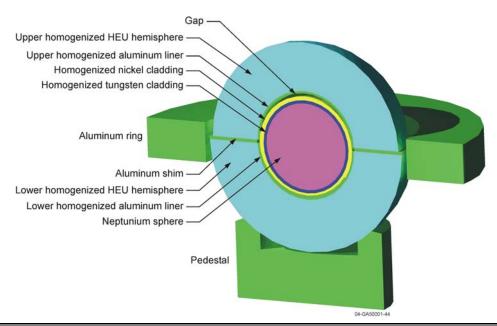
⇒ Fast cross sections for Th should be reviewed

THERMAL URANIUM LATTICES

			Calculated k _{eff}	
Case	Fuel Type	Benchmark k _{eff}	Initial ENDF/B-VII	ENDF/B-VI
SB-21/2	²³³ U	1.0000 ± 0.0024	0.9988 ± 0.0004	0.9964 ± 0.0004
SB-5	HEU	1.0015 ± 0.0028	0.9957 ± 0.0005	0.9965 ± 0.0005
IEU-CT-02 (3)	IEU	1.0000 ± 0.0030	1.0008 ± 0.0003	1.0004 ± 0.0003
BaW XI (2)	LEU	1.0000 ± 0.0006	1.0000 ± 0.0003	0.9968 ± 0.0003

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta \mathbf{k}| > 2\sigma$$


Initial ENDF/B-VII results are within 1 standard deviation for all cases except SB-5

Unlike the others, SB-5 has a buffer region of ThO₂ pins

⇒ Thermal cross sections for Th should be reviewed

NEPTUNIUM SPHERE REFLECTED BY HEU

Benchmark	Calculated k _{eff}		
k _{eff}	Initial ENDF/B-VII	ENDF/B-VI	
1.0019 ± 0.0036	0.9924 ± 0.0003	0.9889 ± 0.0002	

 $|\Delta \mathbf{k}| > 2\sigma$

 \Rightarrow Fast cross sections for ²³⁷Np should be reviewed

UNMODERATED ZEUS BENCHMARK

Benchmark	Basic Library	Calculated k _{eff}		
k _{eff}		ENDF/B-VI Cu	ENDF/B-V Cu	
	ENDF/B-VII	1.0108 ± 0.0003	1.0001 ± 0.0003	
1.0012 ± 0.0015	ENDF/B-VI	1.0080 ± 0.0003	0.9968 ± 0.0003	
	ENDF/B-V	1.0088 ± 0.0003	0.9960 ± 0.0003	

 $|\Delta k| > 2\sigma$

This benchmark has no moderator and therefore has a fast spectrum

Differences between ENDF/B-V and ENDF/B-VI Cu cross sections have little net reactivity impact on previous Zeus benchmarks with graphite moderator, which have intermediate spectra (ENDF/B-VI Cu produces lower capture rate but compensates with higher leakage)

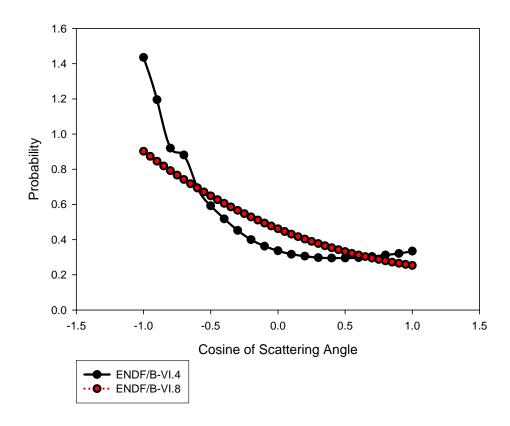
⇒ Fast cross sections for Cu should be reviewed

48-INCH SPHERE OF URANYL FLUORIDE OR PLUTONIUM NITRATE SOLUTION

			Calculated k _{eff}	
	Fuel	Benchmark	Initial	
Case	Type	k_{eff}	ENDF/B-VII	ENDF/B-VI
ORNL-11	²³³ U	1.0006 ± 0.0029	1.0041 ± 0.0002	0.9974 ± 0.0002
ORNL-10	HEU	1.0015 ± 0.0026	0.9989 ± 0.0002	0.9992 ± 0.0002
Pu-ST-09	Pu	1.0000 ± 0.0003	1.0191 ± 0.0002	1.0189 ± 0.0002

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta k| > 2\sigma$$


Very thermal spectra with very little leakage

⇒ Cross sections for ²³³U and (especially) ²³⁹Pu should be re-examined in the deep thermal range

ENDF/B-VI.4 AND ENDF/B-VI.8 ANGULAR SCATTERING DISTRIBUTIONS FOR ¹H AT 1 MeV

ENDF/B-VI.8 distribution has been retained for initial ENDF/B-VII release

RESULTS FOR HEAVY-WATER SOLUTIONS

			Calculated k _{eff}	
Benchmark		Benchmark	Initial ENDF/B-VII	Initial
Set	Case	$\mathbf{k}_{ ext{eff}}$	+ ENDF/B-VI.4 ² H	ENDF/B-VII
	1	1.0000 ± 0.0033	0.9948 ± 0.0004	0.9839 ± 0.0004
Reflected	2	1.0000 ± 0.0036	0.9890 ± 0.0004	0.9795 ± 0.0004
Spheres	3	1.0000 ± 0.0039	0.9959 ± 0.0004	0.9862 ± 0.0004
(HEU-SOL-	4	1.0000 ± 0.0046	0.9983 ± 0.0004	0.9892 ± 0.0004
THERM-004)	5	1.0000 ± 0.0052	0.9967 ± 0.0004	0.9877 ± 0.0005
	6	1.0000 ± 0.0059	0.9931 ± 0.0004	0.9844 ± 0.0004
TT OIL A I	1	0.9966 ± 0.0116	1.0013 ± 0.0005	0.9915 ± 0.0005
Unreflected	2	0.9956 ± 0.0093	1.0066 ± 0.0005	0.9973 ± 0.0005
Cylinders	3	0.9957 ± 0.0079	1.0152 ± 0.0005	1.0059 ± 0.0005
(HEU-SOL-	4	0.9955 ± 0.0078	1.0129 ± 0.0005	1.0023 ± 0.0005
THERM-020)	5	0.9959 ± 0.0077	1.0176 ± 0.0005	1.0091 ± 0.0005

$$\sigma < |\Delta \mathbf{k}| \le 2\sigma$$
 $|\Delta \mathbf{k}| > 2\sigma$

$$|\Delta \mathbf{k}| > 2\sigma$$

 \Rightarrow ²H angular scattering distributions should be reviewed and, if possible, reconciled

